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Fluctuation measurements reveal the outward electromagnetic energy flux needed to drive
the dynamo electromotive force supporting magnetic self-organization in a reversed-field
pinch plasma. The radial Poynting flux due to tearing mode fluctuations is measured
with an insertable probe during magnetic relaxation. This flux corresponds to transient
power levels much larger than the input power and comparable to the global equilibrium
magnetic energy transient loss rate. The probe measurements of this flux are roughly
as predicted by a simple Poynting’s theorem model upon substitution of equilibrium
measurement data.
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1. Introduction

Magnetic self-organization processes determine the signature equilibrium configuration
of reversed-field pinch (RFP) plasmas (Marrelli et al. 2021) driven by steady induction.
In these RFP plasmas, the toroidal magnetic field is peaked in the core, decreases
monotonically with minor radius and reverses direction near the plasma edge. While the
applied loop voltage drive tends to peak the equilibrium radial profile of field-normalized
parallel current density, magnetic relaxation (Taylor 1974) due to nonlinearly interacting
tearing modes (Ho & Craddock 1991) tends to flatten it, an interplay that can take the form
of a sawtooth cycle. During a discrete, spontaneous relaxation event or sawtooth crash,
magnetic tearing rapidly becomes nonlinear and multimode. Core toroidal current density
is suppressed, as poloidal current in the edge is enhanced by a tearing fluctuation-induced
‘dynamo’ electromotive force (EMF) 〈v1 × B1〉|| parallel to the local equilibrium magnetic
field, where v1 and B1 represent velocity and magnetic field fluctuations and brackets
indicate flux-surface averaging (Ortolani & Schnack 1993). This relaxation event increases
the equilibrium toroidal magnetic flux, and the cycle continues.

Much is known about the RFP magnetic self-organization process. In particular,
excitation of core-resonant tearing modes, nonlinear interactions between these modes
with modes resonant at the reversal surface, and the resulting energization of the dynamo
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EMF have all been well studied in magnetohydrodynamics (MHD) computation (Nebel,
Caramana & Schnack 1989; Ho & Craddock 1991; Ortolani & Schnack 1993; Sauppe &
Sovinec 2017). Detailed measurements of the dynamo EMF have been made in experiment
(Ji et al. 1994; den Hartog et al. 1999; Fontana et al. 2000; Kuritsyn et al. 2009). One
aspect of the process that has not received much attention is the role of magnetic tearing
fluctuations in transporting electromagnetic energy from the core, where magnetic energy
is released during relaxation, to the edge, where it becomes available to power dynamo
EMF current drive.

To date, much of the work that has been done to understand energy transport in
RFP plasmas has focused on thermal energy transport. In the RFP, radial magnetic
field fluctuations due to tearing modes produce a stochastic magnetic field in the core
resulting in particle and thermal energy transport from the core to the edge plasma due
to field-parallel streaming (Fiksel et al. 1996; Serianni et al. 2001; Biewer et al. 2003).
While this stochastic field effect accounts for most of the thermal transport through much
of the plasma (Biewer et al. 2003), it only accounts for <30 % of the power lost from the
extreme edge plasma (Fiksel et al. 1996). Previous studies have shown that electrostatic
turbulence is largely responsible for particle losses but can only explain ∼10 % of the
measured thermal energy transport in the edge (Rempel et al. 1991, 1992; Brunsell et al.
1994). The mechanisms responsible for thermal energy losses at the extreme edge and
their relative weights remain incompletely specified.

In this work, electromagnetic energy transport, which is distinct from thermal energy
transport, is examined. The tearing fluctuation-induced Poynting flux is written as Sf =
μ−1

0

∫ 〈E1 × B1〉 · dA, where coherent fluctuations in electric and magnetic fields (E1
and B1) interact to produce a net transport of electromagnetic energy radially through
surface A. To our knowledge, this quantity has not been measured in previous experiments,
nor has it received extensive attention in theoretical or computational works. Tsui (1988)
develops a theoretical treatment that highlights Sf as a channel for energy transport in
an RFP plasma with a perfectly conducting shell, though the work includes no estimate
or measurement of the relative size of this effect. Sovinec (1995) examines the process
using DEBS (Schnack et al. 1987) nonlinear MHD simulations of an RFP plasma with
a close-fitting, perfectly conducting shell. In those simulations the outwardly directed
Sf within the plasma reaches ∼10 % of input power from the external supplies. The
transported energy is deposited into resonant modes near the reversal surface, a key
mechanism in sustainment of the dynamo process. With the perfectly conducting boundary
in the DEBS simulation, no fluctuation-induced Poynting flux is observed at the extreme
edge, as tangential electric field fluctuation amplitudes must vanish at the wall.

In this paper, we present measurements of magnetic tearing fluctuation-driven Poynting
flux from an RFP experiment using an insertable probe, to our knowledge the first
measurements of this quantity in a high-temperature magnetized plasma, and show that
the flux plays a key role in the plasma’s self-organization process. During sawtooth crash
relaxation events, the outward flux corresponds to transient power levels much larger
than the input power and comparable to the global equilibrium magnetic energy loss
rate. The time-average flux is observed to reach a maximum at the magnetic reversal
surface, where it corresponds to ∼65 % of the input power. At the extreme edge the
time-average flux corresponds to ∼20 % of the input, impossible under the assumption of a
perfectly conducting plasma boundary but evidently made possible in the experiment by a
resistive layer at the boundary. We develop a simple model of a cylindrical, incompressible,
resistive-MHD plasma with resistive boundary, which predicts that the fluctuation-induced
Poynting flux out of the plasma edge corresponds approximately to the power lost from
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Electromagnetic energy transport by tearing fluctuations 3

the equilibrium magnetic field due to the dynamo EMF. The probe measurements of this
flux are roughly as predicted by the model upon substitution of time-resolved cylindrical
equilibrium measurement data from the experiment.

2. Model

To examine electromagnetic power balance in an RFP, we develop a simple Poynting’s
theorem model for an incompressible, resistive-MHD plasma with cylindrical flux surfaces
and a resistive boundary. We write each quantity (such as pressure) as p = p0 + p1, the sum
of mean (flux-surface average or equilibrium) and fluctuating parts, respectively, where
〈p〉 = p0 and 〈p1〉 = 0. We define the flux-surface average of a vector quantity (Moffatt
1978; Krause & Rädler 1980; Tsui 1988; Ji et al. 1994; Ji 1999) as the vector sum of the
flux-surface averages of its scalar components (Rädler 2007) in cylindrical coordinates.
For example, the average current density J is written 〈J 〉 = 〈Jr〉r̂ + 〈Jφ〉φ̂ + 〈Jz〉ẑ. Note
that the key results of this section can also be found by an alternative treatment using
only flux-surface averages of scalars. The flux-surface average of a product of a single
fluctuating quantity and a mean quantity is zero (e.g. 〈v1 × B0〉 = 0), while the average of
a product of two or more fluctuating quantities can be non-zero (e.g. 〈v1 × B1〉).

We begin by stating Poynting’s theorem

1
μ0

∫
(E × B) · dA + 1

μ0

∫
B · Ḃ dV +

∫
E · J dV = 0, (2.1)

which represents the balance between the Poynting flux through a surface, the change of
magnetic energy in the volume contained by the surface, and volumetric power transfer,
which includes Ohmic dissipation. Assuming a fluid velocity v with no mean part and a
non-fluctuating resistivity η for simplicity, Ohm’s law is given by

E + v1 × B = ηJ , (2.2)

where the flux-surface average of the second term is the dynamo EMF, 〈v1 × B1〉, and
the fluctuating part is v1 × B0 + v1 × B1 − 〈v1 × B1〉. Since Maxwell’s equations are
linear, Poynting’s theorem (2.1) holds separately for the mean and fluctuating parts of the
electromagnetic quantities. Substitution of the electric fields from the respective Ohm’s
laws (2.2) into the power transfer terms provides results that are then flux-surface averaged,
becoming

1
μ0

∫
(E0 × B0) · dA + 1

μ0

∫
B0 · Ḃ0 dV +

∫
ηJ2

0 dV −
∫

〈v1 × B1〉 · J 0 dV = 0

(2.3)

and

1
μ0

∫
〈E1 × B1〉 · dA + 1

μ0

∫
〈B1 · Ḃ1〉 dV +

∫
η〈J2

1〉 dV

−
∫

〈v1 × B0 · J 1〉 dV −
∫

〈v1 × B1 · J 1〉 dV = 0. (2.4)

Note that the product 〈v1 × B1〉 · J 1 averages to zero and so does not appear in (2.4).
These two equations can be added together to yield the flux-surface average of Poynting’s
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theorem for the total electromagnetic quantities,

1
μ0

∫
〈E × B〉 · dA + 1

μ0

∫
〈B · Ḃ〉 dV +

∫
η〈J2〉 dV −

∫
〈v1 × B · J 〉 dV = 0, (2.5)

remembering that flux-surface averages of a product of one mean and one fluctuating
quantity equals zero (e.g. 〈E0 × B1〉 = 0). The expansion

−〈v1 × B · J 〉 = −〈v1 × B1 · J 0〉 − 〈v1 × B0 · J 1〉 − 〈v1 × B1 · J 1〉 − 〈v1 × B0 · J 0〉
= −〈v1 × B1 · J 0〉 − 〈v1 × B0 · J 1〉 − 〈v1 × B1 · J 1〉 (2.6)

was also used. Note that (2.5) can also be derived directly from (2.1) by substituting (2.2)
into the power transfer term and then flux-surface averaging. Assuming that the fluctuation
evolves slowly compared with an Alfvén time, which is true of tearing modes in typical
experiments (Ortolani & Schnack 1993), the fluctuation is considered to be approximately
in equilibrium. If we further assume that flows are slow compared with the sound speed,
which is consistent with RFP observations (Fontana et al. 2000), we neglect contributions
of flow and viscous dissipation and treat the equilibrium as magnetostatic. Under these
assumptions,

−〈(v1 × B) · J 〉 = 〈v1 · ∇p1〉 . (2.7)

The proof for (2.7) follows. Since p1 = p − 〈p〉, we have

∇p1 = ∇p − ∇ 〈p〉 = ∇p − 〈∇p〉 , (2.8)

where the second equality follows from the definition of a flux-surface average of a vector
(Rädler 2007). With a magnetostatic equilibrium, this can be rewritten as

∇p1 = J × B − 〈J × B〉 = J 0 × B1 + J 1 × B0 + J 1 × B1 − 〈J 1 × B1〉 , (2.9)

where each term that is the flux-surface average of a product including a single fluctuating
quantity equals zero and is neglected. Dotting this with v1 and flux-surface averaging the
result gives

〈v1 · ∇p1〉 = 〈v1 · (J 0 × B1)〉 + 〈v1 · (J 1 × B0)〉 + 〈v1 · (J 1 × B1)〉 (2.10)

where we have recognized that 〈v1 · 〈J 1 × B1〉〉 = 0. If we expand the final integrand
in (2.5) and use vector identities, we find that

−〈v1 × B · J 〉 = 〈v1 · J 0 × B1〉 + 〈v1 · J 1 × B0〉 + 〈v1 · J 1 × B1〉 = 〈v1 · ∇p1〉 (2.11)

as needed. Inserting (2.7) into (2.5), the flux-surface averaged Poynting’s theorem
becomes

1
μ0

∫
〈E × B〉 · dA + 1

μ0

∫ 〈
B · Ḃ

〉
dV +

∫
η

〈
J2〉 dV +

∫
〈v1 · ∇p1〉 dV = 0. (2.12)

Since the φ, z integrations in the flux-surface average are the same integration variables as
are present in the volume integral, the flux-surface average can be brought outside of the
last volume integral on the left. Assuming that flows are incompressible (∇ · v1 = 0), the
last volume integral in (2.12) can be rewritten as a surface integral so that

1
μ0

∫
〈E × B〉 · dA + 1

μ0

∫ 〈
B · Ḃ

〉
dV +

∫
η

〈
J2〉 dV +

〈∫
p1v1 · dA

〉
= 0, (2.13)

where the last integral corresponds to volumetric contributions to the power balance due to
flow fluctuations, including the dynamo EMF. If this expression is examined at the plasma
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edge where p1 = 0 holds, the last integral vanishes. For this case, we separate quantities
into mean and fluctuating parts, giving

S0︷ ︸︸ ︷
1
μ0

∫
(E0 × B0) · dA +

Pohm︷ ︸︸ ︷∫
total

ηJ2
0 dV +

Pmag,0︷ ︸︸ ︷
1
μ0

∫
total

B0 · Ḃ0 dV

+ 1
μ0

∫
total

〈
B1 · Ḃ1

〉
dV︸ ︷︷ ︸

Pmag,1

+ 1
μ0

∫
〈E1 × B1〉 · dA︸ ︷︷ ︸

Sf

= 0, (2.14)

where we have also assumed that the η
〈
J2

1

〉
integral of Ohmic losses due to fluctuations is

negligible compared with any of the other integrals. Variable names have been assigned
to each term for easy reference. This equation shows the expected global power balance
between terms representing the inwardly directed equilibrium Poynting flux provided by
the external power supplies through the plasma’s surface (S0), the equilibrium Ohmic loss
rate in the plasma volume (Pohm), the change of magnetic energy (both in the mean field
Pmag,0 and fluctuations Pmag,1) and the fluctuation-induced Poynting flux Sf . Note that the
assumption of a resistive plasma boundary rather than a perfectly conducting boundary
permits a non-zero tangential E1 and therefore a non-zero Sf .

3. Experiments

Experiments were conducted in the Madison Symmetric Torus (MST) (Dexter et al.
1991), a medium-sized RFP with major radius R = 1.5 m and minor radius a = 0.52 m.
The plasma is surrounded by a thick, close-fitting conducting shell, and a toroidal rail
limiter at the midplane extending ∼1 cm into the plasma determines the plasma–vacuum
boundary. Time-resolved global measurements include plasma current, toroidal-field shell
current, external flux loops from which are derived loop voltages and magnetic fluxes, and
an edge toroidal array for mode decomposition of magnetic fluctuations. Time-resolved
electron temperature profiles were obtained with Thomson scattering (Parke et al. 2012).

To measure Sf , a probe was inserted into the edge region of low-current (Ip ≈ 205 kA)
plasmas with 20.5 V loop voltage and input power S0 ∼ 4.2 MW. Central chord-average
electron density is ne ≈ 1 × 1013 cm−3, while the edge region of radii r sampled by the
probe (0.77 < r/a < 1.0, where r/a = 0.85 is the magnetic reversal surface location)
has ne ∼ (1–5) × 1012 cm−3, temperatures Te ∼ Ti � 50 eV and volume-average mean
magnetic field |B0| ≈ 1100 G. The plasma current and insertion depths were chosen to
ensure probe survival and negligible plasma perturbation.

The insertable probe (Thuecks et al. 2017) was constructed to allow measurement of
poloidal and toroidal electric and magnetic field fluctuations simultaneously and in close
spatial proximity so that the radial Sf can be determined. Eight electrodes were spaced
evenly (0.59 cm spacing) on the edges of a radially facing square and were used to
measure the floating potential Vf . Electric field components in the poloidal (toroidal)
direction were approximated using E ≈ −(Vf 2 − Vf 1)/(x2 − x1) where electrodes are
separated poloidally (toroidally) by a distance x2 − x1. Here, we assumed small gradients
in the electron temperature fluctuations, justified by previous comparisons of independent
electrostatic measurements (Stone 2013), allowing us to approximate the fluctuating
electric field using the floating potentials rather than plasma potentials. The inductive part
of the fluctuating electric field is expected to be negligibly small in the present context
(Ji et al. 1996; Bonfiglio, Cappello & Escande 2005).
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(a)

(b)

(c)

(d)

FIGURE 1. Time-resolved ensembled experimental data showing sawtooth crash event at t = 0:
(a) amplitude of toroidal component of magnetic fluctuation with toroidal mode number n = 1,
dominant at edge; (b) equilibrium toroidal flux; (c) equilibrium magnetic energy from cylindrical
equilibrium fitting; (d) rate of change of equilibrium magnetic energy.

Magnetic fields were measured using an internal B-dot cube located along the radial
axis 0.51 cm below the probe’s electrode plane. Using this cube, Ḃ can be measured in
three orthogonal directions. The Ḃ signal from the B-dot cube was differentially amplified
and was then numerically integrated during analysis to find B. Analysed data was taken
during the plasma current flattop when plasma conditions remained relatively stationary.

Measured quantities are examined with respect to the quasiperiodic sawtooth cycle, with
datasets from (typically) hundreds of sawteeth in many shots sliced into short time series
centred around the sawtooth crashes for ensemble analysis. The fluctuating part of these
quantities is then found by calculating the average time-resolved signal over many sawteeth
and subtracting it from the individual sawtooth datasets.

Natural plasma rotation makes a time-resolved ensemble average for a fluctuating
quantity an approximate spatial average over an equilibrium magnetic flux surface. The
probe is traversed by a randomly phased extent of a rotating flux surface in each sawtooth
dataset. Thus, by averaging over many sawtooth datasets we approximate a time-resolved
flux-surface average. The duration of the ensemble time windows matches the typical
sawtooth period, so the time average of an ensemble-averaged quantity over the window
reflects its sawtooth cycle average.

4. Results

Quasiperiodic sawtooth crash magnetic relaxation events punctuate the plasma current
flattop. Key plasma quantities time-resolved over a sawtooth ensemble are shown in
figure 1. Figure 1(a) shows the amplitude of the toroidal component of magnetic
fluctuations with toroidal mode number n = 1, dominant at the edge and measured by
an edge toroidal array. During the crash, these tearing magnetic fluctuations peak in
amplitude, equilibrium toroidal flux (figure 1b) is generated, and equilibrium magnetic
energy is lost (figure 1c,d) in magnetic relaxation. The magnitude of the loss rate of
equilibrium magnetic energy peaks at ∼20 MW during the crash, which is several times
the input power.
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FIGURE 2. Surface-integrated outwardly directed Poynting flux due to fluctuations versus
time, measured for the experimental range of inserted probe radii in the plasma edge region.
Measurement uncertainties are a few MW during the crash and around 1 MW far from the crash.

Large-scale tearing modes energized at the sawtooth crash drive a nonlinear cascade
supporting broadband fluctuations of electric and magnetic fields (Rempel et al. 1991,
1992; Sarff et al. 1993; Ren et al. 2011; Thuecks et al. 2017), which interact to drive the
outwardly directed Poynting flux Sf that we measure with the probe. Almost all of this
flux is due to the interaction of low-frequency fluctuations associated with large-scale
tearing modes (as opposed to high-frequency, small-scale fluctuations which are also
observed). Figure 2 shows sawtooth-averaged measurements of Sf for the experimental
range of inserted probe radii versus time relative to the sawtooth crash relaxation event.
The measured Sf peaks sharply in time at the crash, reaching values of ∼20–25 MW,
several times the input power, for most of the probe locations including the outermost
edge channels, with a significantly smaller peak just inside the reversal surface. There is
the hint of a trend in the radial variation of the times of Sf peaks, but its significance is
unclear given the measurement uncertainties of several MW during the crash. Measured
fluxes at times far from the crash are relatively very small.

Time averages of Sf (over the sawtooth cycles shown in figure 2) for each probe radial
location are plotted in figure 3. The time-average outward flux reaches ∼2.8 MW, or
∼65 % of the input power, both near the reversal surface at r ≈ 44 cm and at the deepest
probe location of r = 40.5 cm. It is significantly smaller just inside the reversal surface.
We characterize the flux leaving the plasma using the r = 49.5 cm probe location, finding
a time average value of ∼0.8 MW, or ∼20 % of the input power. This location may be close
enough to the wall for the Sf measurement to be affected by the probe port equilibrium
magnetic field error (Fimognari et al. 2010), though the measured values are similar to
those at r = 47.5 cm, not likely to be strongly affected by the port.

This r = 49.5 cm (r/a = 0.95) edge probe measurement is compared with the
prediction of the MHD model discussed above by first evaluating the terms other
than Sf in (2.14), as shown in figure 4. In figure 4(a), the negative Poynting flux
integral S0 = μ−1

0

∫
E0 × B0 · dA represents the inwardly directed power provided by

the external supplies. This is the sum of the surface loop voltage times the circuit
current for the Ohmic and the toroidal magnetic field supplies. It is dominated by the
steady input from the Ohmic supply, though a small transient feature indicating some
power back into the toroidal supply is evident around t = 0. The volume integrals in
this comparison representing Ohmic losses POhm = ∫

ηJ2
0 dV and power to equilibrium

magnetic fields Pmag,0 = μ−1
0

∫
B0 · Ḃ0 dV are derived by fitting equilibrium magnetics

data to a cylindrical ‘alpha’ model (Antoni et al. 1986), a well-established and accurate
approximation for self-organizing RFPs. At each time point, the RFP magnetic equilibrium
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FIGURE 3. Time averages of surface-integrated outwardly directed Poynting flux due to
fluctuations, measured for the experimental range of inserted probe radial locations in the plasma
edge.

profiles in those integrals are available given the edge equilibrium poloidal and toroidal
magnetic fields and equilibrium toroidal flux. Here POhm includes Thomson scattering
data of electron temperature T fit for each time point to a parabolic profile, which is an
adequate approximation over the sawtooth cycle. This provides a time-resolved Spitzer
resistivity profile η ∼ T−3/2 which is scaled by a single constant multiplying factor so that
S0 + POhm + Pmag,0 = 0 holds on time average far from sawtooth crash events, i.e. when
fluctuations are small. A rough estimate of the global power to fluctuating magnetic fields
Pmag,1 = μ−1

0

∫ 〈
B1 · Ḃ1

〉
dV is calculated by assuming uniform fluctuations throughout the

plasma volume equal to those measured at the edge. Though the fluctuation amplitudes
actually have a radial profile, this simplifying approximation is broadly compatible with
available nonlinear MHD simulations of RFPs. It can be heuristically motivated by
the understanding that the dominant mode experimentally detected at the edge is the
edge-resonant n = 1 mode, whose profile is peaked near the edge and can be expected
to be similar in peak amplitude to core-resonant modes. The estimate is small compared
with Pmag,0 during the crash.

In figure 4(b), the negative sum of these terms (labelled as ‘MHD model’) is shown to be
roughly consistent with our probe measurement of Sf at r = 49.5 cm, though a discrepancy
exists for a short time interval around the sawtooth crash. There is a short period of time
immediately following the sawtooth crash during which Sf is observed to be negative,
indicating inward energy transport, though the statistical significance of this feature is
questionable. As in our simple MHD model of an incompressible plasma with a resistive
edge, the large equilibrium magnetic field power loss rate during the sawtooth crash can be
largely identified with tearing fluctuation-induced Poynting flux measured in the plasma
edge.

5. Discussion

The fluctuation-induced Poynting flux is a key mechanism supporting magnetic
relaxation in this self-organizing RFP plasma. Our experiments showing a finite measured
value of the flux Sf at the edge indicate that it transports more than enough power through
the plasma to energize the dynamo EMF driving the relaxation. As discussed in relation
to figure 2, the measured Sf reaches instantaneous values of ∼25 MW in the edge region,
comparable to the measured equilibrium loss rate Pmag,0 and much larger than the input
power S0. In its radial profile, Sf is observed to drop from a higher value to a significantly
lower value just inside the reversal surface and then to rise to a higher value just outside it.
Hypothetically, the inside drop might correspond to power absorption into edge-resonant
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(a)

(b)

FIGURE 4. Time-resolved experimental quantities in global electromagnetic power balance:
(a) with same signs as integrals in (2.14), the input power S0 (blue), Ohmic losses POhm (orange),
power into equilibrium magnetic field Pmag,0 (black), estimated power into fluctuating magnetic
field Pmag,1 (green); (b) probe-measured Sf (blue) and negative sum of terms in panel (a) (red).

fluctuations generating the dynamo EMF, which would also radiate power (originating in
the equilibrium) corresponding to the rise just outside.

Considering (2.3), recognition that the experimentally measured S0 and POhm in
figure 4(a) nearly balance each other during relaxation implies

Pmag,0 ≈
∫

〈v1 × B1〉 · J 0 dV, (5.1)

i.e. that the rapid loss of equilibrium energy during the crash in the experiment can be
ascribed to dynamo EMF drive and antidrive of the equilibrium current, wherever they
occur in the plasma. More comprehensively, subtracting (2.3) from (2.14) gives∫

〈v1 × B1〉 · J 0 dV + Sf + Pmag,1 ≈ 0, (5.2)

which, considering figure 4(b), indicates that much of this same energy loss is transmitted
to the edge and released from the plasma, with the remainder evidently available to
power magnetic fluctuations during the crash. Furthermore, since Pmag,1 vanishes on time
average, (5.2) suggests that almost all of the energy lost from the equilibrium field during
the relaxation event leaves the plasma over time as Sf (apart from small fluctuation
Ohmic losses). This picture is distinct from corresponding theoretical results such as
Bhattacharjee & Hameiri (1986) involving perfectly conducting boundaries. Although the
thick MST shell is highly conductive, the plasma boundary region, which we consider as
including the extreme edge and the limiter, appears to behave resistively in the present
context.

Ion heating by magnetic reconnection during relaxation, which accounts for
approximately 15 %–20 % of the equilibrium field energy lost during the crash (Fiksel
et al. 2009), is not included in our MHD analysis. This heating, which occurs most
intensely during the sawtooth crash, may help to explain the discrepancy visible in
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figure 4(b). Integration of the curves in figure 4(b) reveals that the energy carried out of the
plasma by Sf during the sawtooth event represents ∼70 % of the MHD model prediction.
When combined with ion heating estimates, 85 %–90 % of the energy is accounted for,
with the remaining difference within measurement and model uncertainties.

The role played by Sf in the RFP’s magnetic relaxation process highlights the
importance of geometry and boundary conditions in self-organizing systems. As motivated
by the form of Poynting’s theorem and the discussion of Sovinec (1995) in the RFP
context, electromagnetic energy must travel spatially across a system in order to be
exchanged between multiple, nonlinearly coupled fluctuations and equilibrium. That the
magnitude of this flux is apparently coupled to boundary conditions is indicated by
comparing our experimental results with the nonlinear resistive-MHD simulations of
Sovinec (1995). With the conducting boundary in the simulations, Sf identically vanishes
in the extreme edge and, aside from Ohmic fluctuation losses, is evidently just sufficient
within the plasma to drive the dynamo EMF, peaking radially at a time average of ∼10 %
of the input power. In our experiments, the relaxation process seems to be much less
efficient. The Sf in the edge region peaks at an instantaneous value of several times the
input power and averages ∼65 % of it over time. The resistive character of the plasma
boundary region allows an appreciable fraction to escape at the edge, ∼20 % of the input
on average.

How the observed Poynting flux at the plasma edge is dissipated in the experiment is
not clear. Some power might be lost directly onto the limiter, and some might be deposited
into neutrals via charge exchange processes, followed by their loss to the wall. A related
question is how the observed electromagnetic energy transport and loss at the plasma edge
relates to global thermal energy balance. Formally, Poynting flux is closely related to the
plasma E-cross-B flow, and thus Sf at the edge could correspond to the global loss of
thermal plasma energy.

Future work will include deeper probe measurements of fluctuation-induced Poynting
flux Sf to better determine the global character of this key transport mechanism. This could
be combined with an equilibrium scan of the radial location of the RFP reversal surface, in
particular to study the implied efficiency of the power transfer from equilibrium to dynamo
EMF. We also intend to investigate direct correlations between Sf and the dynamo EMF as
well as magnetic helicity using probes (Ji et al. 1994; Ji 1999; Stone 2013). Investigating
detailed temporal correlations between such probe measurements and individual resonant
mode activity may also help illuminate the role of Sf in the relaxation process. A new probe
might be designed to internally measure the radial component of the 〈p1v1〉 term in (2.13)
relating to the volume integral of total dynamo-induced magnetic energy loss rate. New
nonlinear MHD simulations of the RFP with explicitly resistive boundary conditions may
provide further insight into the issues discussed in this work. More generally, the role of
fluctuation-induced Poynting flux should be explored in other magnetized plasma systems,
in particular those involving phenomena such as magnetic tearing, turbulence, relaxation
or self-organization.
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